Course Code	19BS1201	Year	Ι	Semester	II	
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory	
Credits	3	L-T-P	-P 3-0-0 Prerequisit		Calculus&Algebra	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Engineering Mathematics – II (ODE, PDE and Multivariable Calculus)

	Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO1	1 solve the differential equations related to various engineering fields .							
CO2	Solve the linear differential equation with constant coefficients.							
CO3	identify solution methods for partial differential equations that model physical							
	processes .							
CO4	interpret the physical meaning of gradient, curl and divergence.							
CO5	determine the work done against a force field, circulation and flux using vector							
	calculus.							

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Μ											М	L
CO2	Н	М											М	L
CO3	Н	М											М	L
CO4	Н	Μ											М	L
CO5	Н	М											М	L

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	Linear Differential Equations of Higher Order: Definitions, complete solution, operator D, rules for finding complimentary function, inverse operator, rules for finding particular integral, method of variation of parameters.	CO1
II	EquationsReducibletoLinearDifferentialEquationsandApplications:Cauchy's and Legendre's linear equations, simultaneous linear equationswith constant coefficients, Applications:Mass spring system and L-C-RCircuit problems.	CO2
III	Partial Differential Equations: First order partial differential equations, solutions of first order linear PDEs, Charpit's method, solutions to homogenous and non-homogenous linear partial differential equations.	CO3
IV	Multivariable Calculus (Vector Differentiation):Scalar and vector point functions, vector operator del, del applies to scalar point functions-	CO4

	Gradient, del applied to vector point functions-Divergence and Curl, vector	
	identities	
V	Multivariable Calculus (Vector Integration): Line integral-circulation- work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof).	CO5

Learning Resources					
Text Books					
1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2018					
2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.					
Reference Books					
1 R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science					
International Ltd., 2002.					
2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson					
Publishers, 2013.					
3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.					
e- Resources & other digital material					
www.nptelvideos.com/mathematics/					

www.nptelvideos.com/mathematics/ https://nptel.ac.in/courses/111104025/ https://nptel.ac.in/courses/122101003/